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Informal Proofs Formal Proofs

Announcements
For 10.06.11

1 HW6 (practice midterm, 7.12, 7.13, 8.17) is due in
class on Thursday 10.13

• Answers will be posted on Bb Wednesday (10.11)

2 The midterm is on Thursday 10.13

• You will have until Saturday 10.15 for take-home
portion

3 Practice midterm will be reviewed in section

• Weds 10.12: 1:25-2:15 (Uris 307)
• Weds 10.13: 8-9pm (Location TBA)

4 HW1-4 will be returned after class
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Outline

1 Informal Proofs

2 Formal Proofs
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Informal Proofs Formal Proofs

Material Conditional
Modus Ponens

Truth Table for →
P Q P→ Q
t t t
t f f
f t t
f f t

Modus Ponens

If you have established P→ Q
and P, then you can infer Q

• This rule is also known as
conditional elimination

• Why, again, is modus ponens correct?

• If P→ Q is t and P is t, then Q must be t
• So when you have P→ Q and P, you have Q!
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Material Conditional
Modus Ponens at Work

A Simple Application of Modus Ponens

Suppose you are told that if a is a cube, then it is small, and that a is
indeed a cube. Then it follows by modus ponens that a is small.
Symbolically:

Cube(a)→ Small(a) and Cube(a), therefore Small(a).

Modus Ponens Again

Suppose you are told that if a is either a cube or a tetrahedron, then
a is in the same row as b, and that a is a cube. Then it follows that a
is a cube or a tetrahedron. So by modus ponens, it follows that a is in
the same row as b. Symbolically:

We are given that (Cube(a) ∨ Tet(a))→ SameRow(a, b) and Cube(a).
By the second claim: Cube(a) ∨ Tet(a) follows. Then by modus
ponens it follows that SameRow(a, b).
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Conditional Proof
The Method

The Method of Conditional Proof

To prove P→ Q, temporarily assume P. If you can show Q
with this additional assumption, you can infer P→ Q

Truth Table for →
P Q P→ Q
t t t
t f f
f t t
f f t

• The only way for P→ Q to
be f is for P to be t and Q
be f

• So, if you can show that
when P is t Q is also t,
you’ve shown that P→ Q is
not f; but then it must be t!
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Conditional Proof
An Example

Let’s use conditional proof and modus ponens to give a
proof of:

Argument 1

Tet(a)→ Tet(b)

Tet(b)→ Tet(c)

Tet(a)→ Tet(c)

Our goal is a conditional, so we use conditional proof.

Proof : Suppose Tet(a). Then by premise 1 Tet(b) follows
by modus ponens. But then we may now again use modus
ponens and premise 2 to infer Tet(c). This is the
consequent of our goal, so we have successfully completed
our conditional proof.
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Conditional Proof
Another Example

Let’s do exercise 8.4 on the chalkboard

8.4 The unicorn, if horned, is elusive and dangerous.

If elusive or mythical, the unicorn is rare.

If a mammal, the unicorn is not rare.

The unicorn, if horned, is not a mammal.

Give an informal proof of the validity of this argument,
using conditional proof.
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The Material Biconditional
Elimination

Truth Table for ↔
P Q P↔ Q
t t t
t f f
f t f
f f t

Biconditional Elimination

If you have established either
P↔ Q or Q↔ P and P, then
you can infer Q.

• This rule is also known as
biconditional elimination

• Why is this correct?

• If P↔ Q is t and P is t, then Q must be t
• Similarly, if P↔ Q is t and Q is t, then P is t
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The Material Biconditional
Elimination

Biconditional Elimination Example

Suppose you are told that a is in the same column as b if
and only if a is a tetrahedron, and that a is tetrahedron.
Then by biconditional elimination, it follows that a is in
the same column as b. Symbolically:

SameCol(a, b)↔ Tet(a) and Tet(a), so SameCol(a, b).
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Proving Biconditionals
Conditional Proof Twice Over

How to Prove a Biconditional

To prove P↔ Q, first, use conditional proof to prove
P→ Q. Then use conditional proof again to prove Q→ P.
Showing these two conditionals suffices to prove the
biconditional.

• How do you prove a biconditional like P↔ Q?

• We know that P→ Q is equivalent to
(P→ Q) ∧ (Q→ P)

• But we know how to prove (P→ Q) ∧ (Q→ P):

• Use conditional proof to show P→ Q
• Then use conditional proof to show Q→ P
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Proving A Biconditional
An Example

Let’s give an informal proof of this argument:

Cube(a)↔ Cube(b)

Cube(b)↔ Cube(c)

Cube(a)↔ Cube(c)

Our goal is a biconditional, so we do two conditional proofs.

Proof :

1 First we’ll show Cube(a) → Cube(c) by conditional proof. Suppose Cube(a).
Then from premise 1 Cube(b) follows by biconditional elimination. From
this and premise 2 it follows by biconditional elimination again that
Cube(c). So, Cube(a) → Cube(c)

2 Now we’ll show Cube(c) → Cube(a) by conditional proof. Suppose Cube(c).
Then from premise 2 Cube(b) follows by biconditional elimination. From
this and premise 1 it follows by biconditional elimination again that
Cube(a). So, Cube(c) → Cube(a).

By these two conditional proofs, it follows that Cube(a) ↔ Cube(c)
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Proving a Biconditional
In Class Exercise

Exercise 8.5: Construct an informal proof of the argument.
Here’s the argument translated into fol.

(Horned(u)→ (Elusive(u) ∧Magical(u)))

∧ (¬Horned(u)→ (¬Elusive(u) ∧ ¬Magical(u)))

¬Horned(u)→ ¬Mythical(u)

Horned(u)↔ (Magical(u) ∨Mythical(u))
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Conditionals
Additional Steps

Some equivalences that are useful for informal proofs
w/conditionals:

Important Equivalences

P→ Q ⇐⇒ ¬Q→ ¬P
P→ Q ⇐⇒ ¬P ∨ Q
¬(P→ Q) ⇐⇒ P ∧ ¬Q
P↔ Q ⇐⇒ (P→ Q) ∧ (Q→ P)
P↔ Q ⇐⇒ (P ∧ Q) ∨ (¬P ∧ ¬Q)
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Conditional Elimination
Formalizing Modus Ponens

Modus Ponens

If you have established P→ Q
and P, then you can infer Q

• A simple example:

1 Tet(a)→ Tet(b)

2 Tet(a)

3 Tet(b) → Elim: 1, 2

→ Elim

P→ Q
...

P
...

� Q

• → Elim is the formal counterpart to our informal rule
called modus ponens
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An Example
Using → Elim

Let’s construct a formal proof for this argument:

8.31

(¬Mythical(c)→ Mammal(c)) ∧ (Mythical(c)→ ¬Mortal(c))

(¬Mortal(c) ∨Mammal(c))→ Horned(c)

Horned(c)→ Magical(c)

¬Mythical(c) ∨Mythical(c)

Magical(c)
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Conditional Introduction
Formalizing Conditional Proof

Conditional Proof

To prove P→ Q, temporarily

assume P. If you can show Q with

this additional assumption, you can

infer P→ Q w/o this assumption

• A simple example:

1 b = a

2 Tet(a)

3 Tet(b) = Elim: 1, 2

4 Tet(a)→ Tet(b) → Intro: 2-3

→ Intro

P
...

Q

� P→ Q
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Conditional Rules
Another Example with → Elim & → Intro

Let’s do exercise 8.32. This involves a formal version of the
informal proof we did for exercise 8.4. We will use the
informal proof to guide us.
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↔ Elim
Formalizing Biconditional Elimination

Biconditional Elimination

If you have established either
P↔ Q or Q↔ P, and P, then
you can infer Q

• A simple example:

1 Tet(a)↔ Tet(b)

2 Tet(a)

3 Tet(b) ↔ Elim: 1, 2

↔ Elim

P↔ Q (or Q↔ P)
...

P
...

� Q

• ↔ Elim is the formal counterpart to our informal rule
called biconditional elimination
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↔ Intro
Formalizing Biconditional Proof

Biconditional Proof

To prove P↔ Q use conditional proof
to show P→ Q. Then use conditional
proof again to show Q→ P.

• One subproof amounts to showing
P→ Q

• The other amounts to showing
Q→ P

↔ Intro

P
...

Q

Q
...

P

� P↔ Q
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↔ Elim & ↔ Intro
A Simple Example

Let’s do a proof in Fitch for a simple example that uses
both ↔ Intro and ↔ Elim:

8.25 Transitivity of the Biconditional

A↔ B

B↔ C

A↔ C

William Starr | Phil 2310: Intro Logic | Cornell University 29/30

Informal Proofs Formal Proofs

↔ Elim & ↔ Intro
In Class Exercise

You constructed an informal proof for this argument, now
turn this into a formal proof :

8.33 (Horned(c)→ (Elusive(c) ∧Magical(c)))

∧ (¬Horned(c)→ (¬Elusive(c) ∧ ¬Magical(c)))

¬Horned(c)→ ¬Mythical(c)

Horned(c)↔ (Magical(c) ∨Mythical(c))

Hint: You should do two subproofs and then apply ↔ Intro to get the conclusion

1 In the first subproof, assume Horned(c), show Magical(c) ∨Mythical(c)

2 In the second one, assume Magical(c) ∨Mythical(c), show Horned(c). It may
be easier to show Horned(c) using indirect proof (assume ¬Horned(c) and
derive ⊥)
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