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Announcements
11.15

® Grades for HW1-8 are on Bb
e Check them!

® Many people have been submitting electronic HW
incorrectly

e See recent announcement
e If you have 0s or low scores on all electronic
assignments: this applies to you!
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Two Inference Steps

In Review

Existential Introduction (Official Version)

5(c)
> | IxS(x)

(When ‘c’ names an object in the domain of discourse)

Universal Elimination (Official Version)

Vx S(x)
> | S(c)

(Where ‘¢’ refers to an object in the domain of discourse)
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Existential Elimination
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Existential Elimination

In Review

The Method of Existential Elimination

® Given IxS(x), you may give a dummy name to (one
of) the object(s) satisfying S(x), say c, and then
assume S(c)

® However, c must be a new name, i.e. one not already
in use in the context of your proof

e You are likely to need this method when you have an
existential premise
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Universal Introduction

An Example

Example Argument Proof:

e From 2 we know there is
some block, call it d, such
that Tet(d) (Exist. Elim.)

e From 1 by Univ.
Elim.:Tet(d) — Small(d)

1 | Wx[Tet(x) — Small(x)]
2 Ix Tet(x)
3 Ix Small(x)

v

e So we have Small(d) by modus ponens
e By Exist. Intro. it follows that: Ix Small(x) v
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Universal Introduction

The Official Formulation

Universal Introduction

To prove VxS(x):

® Introduce a new name c to stand for a completely
arbitrary member of the domain of discourse

® Prove S(c)
® Conclude VxS(x)

¢ You will need to use this method whenever you are
trying to prove a universal claim

¢ You do not use the method ‘on’ universal premises
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An Example

1 | VySameSize(y, b)
2 | Vx[SameSize(x,b) — LeftOf(x, a)]
3 | Vx3JyLeftOf(x,y)

Proof: Let c be an arbitrary block. (Goal: Jy LeftOf(c,y))
From 1 we get SameSize(c, b), by Univ. Elim. From 2 we
get SameSize(c,b) — LeftOf(c,a). So LeftOf(c,a) follows by
modus ponens. By Exist. Intro. we get Jy LeftOf(c,y). But
¢ was arbitrary, so ¥x Jy Smaller(x,y) follows by Univ. Intro.
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General Conditional Proof
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Mixing Quantifiers

In Review

To prove Vx (A(x) — B(x)):
® Introduce a new name c to stand for a completely
arbitrary member of the domain of discourse
® Assume A(c)
® Prove B(c)
© Conclude Vx (A(x) — B(x))

e Use this method to prove universal conditionals like
Vx (Cube(x) — Small(x))
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Mixing Quantifiers

A Real Proof

1 | JyVxLoves(x,y)

2 | Vx3dyLoves(x,y)
Proof: We will show that Jy Loves(a,y), holds for an
arbitrary a. Given the premise, at least one person is loved
by everyone. Assume d is one of these lucky people:
Vx Loves(x, d), by Exist. Elim. Univ. Elim. gives us
Loves(a,d). By Exist. Intro. it follows that Jy Loves(a,y).

Since a was arbitrary, it follows by Univ. Intro. that
Vx Jy Loves(x,y).
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In a Proof

e We will often want to use both Exist. Elim. and Univ.
Intro. or Gen. Cond. Pf.

e Two of the important facts we’ve recently learned:
e Using existential elimination requires the careful use
of arbitrary names
e Using universal introduction requires the careful use
of arbitrary names

e An equally important consequence of these facts:

Important Fact about Mixing Quantifier Proof Methods

Using existential elimination and universal introduction
together requires doubly careful use of arbitrary names.
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Mixing Quantifiers

The Opposite Inference is Invalid

1 | Vx3JyLoves(x,y)
2 | dyVxLoves(x,y)

e We know that this inference isn’t valid

e Consider a world with two people:
e Alice and Bob

Bob loves Alice

Alice loves Bob

But, Bob does not love himself

e And Alice does not love herself

e The premise is true: everyone loves someone or other

e But the conclusion is false, no one is loved by everyone
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Mixing Quantifiers Mixing Quantifiers
A Pseudo-Proof The Moral

1| 3y Loves(x,y)

® Universal Introduction: To prove ¥xS(x), chose a
2 | JyVxLoves(x,y) new constant ¢ and prove S(c), making sure that S(c)
does not contain any names introduced by Exist. Elim.
after the introduction of c.

e Above, g was introduced by Exist. Elim. after b

Pseudo-Proof: Let b be an arbitrary boy. By premise 1, he
loves some girl. Assume it’s g. Since b was chosen arbitrarily,

we may conclude by Univ. Intro. that Vx Loves(x,g). The
conclusion follows by exist. intro.! ® Same for applications of General Conditional Proof

e The crucial misstep: is b wasn’t arbitrary!
e If you do not follow this advice, you will be able to

e Why? Introducing g, a specific girl that b likes, makes i ) )
give ‘proofs’ of invalid arguments

b non-arbitrary!
e QOur proof then contains information particular to b: e But, if there’s proofs of invalid arguments, the whole

which girl he likes, namely g! idea of proof is bankrupt!
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In-Class Exercise Mixing Quantifiers in Proofs
Exercise 12.14 Where We Are

12.14 This exercise contains a purported proof. If it is
correct, say so. If it is incorrect, explain what goes wrong
using the notions presented above.

So far: an important lesson about how not to apply
Univ. Intro. and Exist. Elim.

We learned how to recognize this mistake

Ix(x =x— —Jyx #y) (There is at most one object)

But we also need to practice correctly mixing these
Purported proof: Toward a proof by contradiction, suppose two rules
—3x (x = x — -3y x # y). This is equivalent to

So let’s do some more informal proofs that require
Vx=(x = x — =Jdyx # y), which is equivalent to mixing the two rules

Vx(x =x A Jyx #y). By Univ. Elim. we get c=cAJyc#y.

By Exist. Elim. we may assume c # d. But, since c was

arbitrary, it follows that ¥xx # d. By Univ. Elim, we get d # d,

which is a contradiction. Thus, the conclusion must be true.
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Mixing Quantifiers Mixing Quantifiers

An Example Another Example

Jy ¥x (Smaller
Vx Vy [Smaller(x,y) — SameShape(x, y)] Vy Vx (Smaller

Vx Jy [Adjoins(x,y) — Smaller(x, y)] _vzvy [(LeftOf(z,y) A = Tet(z)) — Cube(z)]
Vx (Vy LeftOf(x,y) — Cube(x))

(x,y) V —Tet(x))
(y,x) — Cube(y))

Vx Jy [Adjoins(x,y) — SameShape(x, y)]

Proof: We will use general conditional proof, but first we apply Exist. Elim. to

Proof: From premise 2 by Univ. Elim. premise 1 and assume Vx (Smaller(x,a) V = Tet(x)). Now we take an arbitrary c and
Ely [AdjOinS(C, y) — Sma”el’(C, y)] . By Exist. Elim. we may assume Yy LeftOf(c,y), with the goal of showing Cube(c). This assumption gives us
then assume Adjoins(c,d) — Smaller(c,d). From premise 1 LeftOf(c,a) by Univ. Elim. By Univ. Elim. we also have Smaller(c, a) V —Tet(c).
by Univ. Elim. Sma”er(C, d) — Sa meShape(C, d) By the Consider the second case. Premise 3 gives us (LeftOf(c,a) A = Tet(c)) — Cube(c).
transitivity of —, We have Adjoins(c, d) — Sa meShape(c, d) Then Cube(c) follows by modus ponens. In the second case, premise 2 gives us
Exist. Intro. then giVGS us (Smaller(c,a) — Cube(c)) by Univ. Elim. So we have Cube(c) again by modus

Ely [AdjOinS(C, y) — SameSha pe(C, }/)] . Since ¢ was arbitrary, ponens. Thus, either way, we have Cube(c), and since ¢ was arbitrary the

the conclusion follows by Univ. Intro. conclusion follows by general conditional proof.

William Starr | Phil 2621: Minds & Machines | Cornell University William Starr | Phil 2621: Minds & Machines | Cornell University




	
	Review
	Caution When Mixing Quantifiers
	Proofs With Mixed Quantifiers

