Announcements 11.15

Informal Proofs with Quantifiers III

Mixed Proofs

William Starr

11.15.11

William Starr | Phil 2621: Minds & Machines | Cornell University

1/2

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Outline

- Review
- 2 Caution When Mixing Quantifiers
- Proofs With Mixed Quantifiers

• Grades for HW1-8 are on Bb

- Check them!
- 2 Many people have been submitting electronic HW incorrectly
 - See recent announcement
 - If you have 0s or low scores on all electronic assignments: this applies to you!

William Starr | Phil 2621: Minds & Machines | Cornell University

2/2

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Two Inference Steps

In Review

Existential Introduction (Official Version)

$$\triangleright | \frac{S(c)}{\exists x S(x)}$$

(When 'c' names an object in the domain of discourse)

Universal Elimination (Official Version)

$$\triangleright \frac{\forall x \, S(x)}{S(c)}$$

(Where 'c' refers to an object in the domain of discourse)

Existential Elimination

In Review

The Method of Existential Elimination

- ① Given $\exists x \, S(x)$, you may give a dummy name to (one of) the object(s) satisfying S(x), say c, and then assume S(c)
- 2 However, c must be a new name, i.e. one not already in use in the context of your proof
- You are likely to need this method when you have an existential premise

William Starr | Phil 2621: Minds & Machines | Cornell University

6/2

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Existential Elimination

An Example

Example Argument

$$\begin{array}{c|c} 1 & \forall x \left[\mathsf{Tet}(\mathsf{x}) \to \mathsf{Small}(\mathsf{x}) \right] \\ 2 & \exists \mathsf{x} \, \mathsf{Tet}(\mathsf{x}) \\ 3 & \exists \mathsf{x} \, \mathsf{Small}(\mathsf{x}) \end{array}$$

Proof:

- From 2 we know there is some block, call it d, such that Tet(d) (Exist. Elim.)
- From 1 by Univ. $Elim.:Tet(d) \rightarrow Small(d)$
- ullet So we have Small(d) by modus ponens
- By Exist. Intro. it follows that: $\exists x \, \mathsf{Small}(x)$

William Starr | Phil 2621: Minds & Machines | Cornell University

7/01

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Universal Introduction

The Official Formulation

Universal Introduction

To prove $\forall x S(x)$:

- 1 Introduce a new name c to stand for a completely arbitrary member of the domain of discourse
- **2** Prove **S**(**c**)
- 3 Conclude $\forall x S(x)$
- You will need to use this method whenever you are trying to **prove** a universal claim
- You do not use the method 'on' universal premises

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Universal Introduction

An Example

1
$$\forall y \, \mathsf{SameSize}(y, \mathsf{b})$$

$$2 \quad \forall x \left[\mathsf{SameSize}(\mathsf{x},\mathsf{b}) \to \mathsf{LeftOf}(\mathsf{x},\mathsf{a}) \right]$$

$$3 \quad \forall x \exists y \, \mathsf{LeftOf}(\mathsf{x},\mathsf{y})$$

Proof: Let c be an arbitrary block. (*Goal*: $\exists y \, \mathsf{LeftOf}(c,y)$) From 1 we get $\mathsf{SameSize}(c,b)$, by Univ. Elim. From 2 we get $\mathsf{SameSize}(c,b) \to \mathsf{LeftOf}(c,a)$. So $\mathsf{LeftOf}(c,a)$ follows by modus ponens. By Exist. Intro. we get $\exists y \, \mathsf{LeftOf}(c,y)$. But c was arbitrary, so $\forall x \, \exists y \, \mathsf{Smaller}(x,y)$ follows by Univ. Intro.

General Conditional Proof

In Review

General Conditional Proof

To prove $\forall x (A(x) \rightarrow B(x))$:

- 1 Introduce a new name c to stand for a completely arbitrary member of the domain of discourse
- \bigcirc Assume A(c)
- 3 Prove B(c)
- Use this method to **prove** universal conditionals like $\forall x (Cube(x) \rightarrow Small(x))$

William Starr | Phil 2621: Minds & Machines | Cornell University

10/2

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Mixing Quantifiers A Real Proof

$$1 \quad | \exists y \, \forall x \, \mathsf{Loves}(\mathsf{x}, \mathsf{y})$$

$$2 \quad \forall x \exists y Loves(x, y)$$

Proof: We will show that $\exists y \, \mathsf{Loves}(\mathsf{a}, \mathsf{y})$, holds for an arbitrary a . Given the premise, at least one person is loved by everyone. Assume d is one of these lucky people: $\forall x \, \mathsf{Loves}(\mathsf{x}, \mathsf{d})$, by Exist. Elim. Univ. Elim. gives us $\mathsf{Loves}(\mathsf{a}, \mathsf{d})$. By Exist. Intro. it follows that $\exists y \, \mathsf{Loves}(\mathsf{a}, \mathsf{y})$. Since a was arbitrary, it follows by Univ. Intro. that $\forall x \, \exists y \, \mathsf{Loves}(\mathsf{x}, \mathsf{y})$.

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Mixing Quantifiers In a Proof

- We will often want to use both Exist. Elim. and Univ. Intro. or Gen. Cond. Pf.
- Two of the important facts we've recently learned:
 - Using existential elimination requires the careful use of arbitrary names
 - Using universal introduction requires the careful use of arbitrary names
- An equally important consequence of these facts:

Important Fact about Mixing Quantifier Proof Methods

Using existential elimination and universal introduction together requires doubly careful use of arbitrary names.

William Starr | Phil 2621: Minds & Machines | Cornell University

11/21

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Mixing Quantifiers

The Opposite Inference is Invalid

$$\begin{array}{c|c}
1 & \forall x \exists y Loves(x, y) \\
\hline
2 & \exists y \forall x Loves(x, y)
\end{array}$$

- We know that this inference isn't valid
- Consider a world with two people:
 - Alice and Bob
 - Bob loves Alice
 - Alice loves Bob
 - But, Bob does not love himself
 - And Alice does not love herself
- The premise is true: everyone loves someone or other
- But the conclusion is false, no one is loved by everyone

Mixing Quantifiers

A Pseudo-Proof

$$\begin{array}{c|c}
1 & \forall x \exists y Loves(x, y) \\
\hline
2 & \exists y \forall x Loves(x, y)
\end{array}$$

Pseudo-Proof: Let b be an arbitrary boy. By premise 1, he loves some girl. Assume it's g. Since b was chosen arbitrarily, we may conclude by Univ. Intro. that $\forall x \text{Loves}(x, g)$. The conclusion follows by exist. intro.!

- The crucial misstep: is b wasn't arbitrary!
- Why? Introducing q, a specific girl that b likes, makes b non-arbitrary!
 - Our proof then contains information particular to b: which girl he likes, namely q!

William Starr | Phil 2621: Minds & Machines | Cornell University

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

In-Class Exercise

Exercise 12.14

12.14 This exercise contains a purported proof. If it is correct, say so. If it is incorrect, explain what goes wrong using the notions presented above.

$$\exists x (x = x \rightarrow \neg \exists y \, x \neq y) \quad \text{(There is at most one object)}$$

Purported proof: Toward a proof by contradiction, suppose $\neg \exists x (x = x \rightarrow \neg \exists y x \neq y)$. This is equivalent to $\forall x \neg (x = x \rightarrow \neg \exists y \, x \neq y)$, which is equivalent to $\forall x (x = x \land \exists y x \neq y)$. By Univ. Elim. we get $c = c \land \exists y c \neq y$. By Exist. Elim. we may assume $c \neq d$. But, since c was arbitrary, it follows that $\forall x x \neq d$. By Univ. Elim, we get $d \neq d$, which is a contradiction. Thus, the conclusion must be true.

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Mixing Quantifiers

The Moral

Summary

- **1** Universal Introduction: To prove $\forall x S(x)$, chose a new constant c and prove S(c), making sure that S(c)does not contain any names introduced by Exist. Elim. after the introduction of c.
 - Above, g was introduced by Exist. Elim. after b
- 2 Same for applications of General Conditional Proof
- If you do not follow this advice, you will be able to give 'proofs' of invalid arguments
- But, if there's proofs of invalid arguments, the whole idea of proof is bankrupt!

William Starr | Phil 2621: Minds & Machines | Cornell University

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Mixing Quantifiers in Proofs Where We Are

- So far: an important lesson about how **not** to apply Univ. Intro. and Exist. Elim.
- We learned how to recognize this mistake
- But we also need to practice correctly mixing these two rules
- So let's do some more informal proofs that require mixing the two rules

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Mixing Quantifiers An Example

 $\begin{array}{c} \forall x\,\forall y\,[\mathsf{Smaller}(x,y)\to\mathsf{SameShape}(x,y)]\\ \\ \forall x\,\exists y\,[\mathsf{Adjoins}(x,y)\to\mathsf{Smaller}(x,y)]\\ \\ \hline \forall x\,\exists y\,[\mathsf{Adjoins}(x,y)\to\mathsf{SameShape}(x,y)] \end{array}$

Proof: From premise 2 by Univ. Elim. $\exists y \, [Adjoins(c,y) \to Smaller(c,y)]$. By Exist. Elim. we may then assume $Adjoins(c,d) \to Smaller(c,d)$. From premise 1 by Univ. Elim. $Smaller(c,d) \to SameShape(c,d)$. By the transitivity of \to , we have $Adjoins(c,d) \to SameShape(c,d)$. Exist. Intro. then gives us $\exists y \, [Adjoins(c,y) \to SameShape(c,y)]$. Since c was arbitrary, the conclusion follows by Univ. Intro.

William Starr | Phil 2621: Minds & Machines | Cornell University

Review Caution When Mixing Quantifiers Proofs With Mixed Quantifiers

Mixing Quantifiers

Another Example

$$\exists y \, \forall x \, (\mathsf{Smaller}(x, y) \, \vee \neg \mathsf{Tet}(x))$$

$$\forall y \, \forall x \, (\mathsf{Smaller}(y, x) \rightarrow \mathsf{Cube}(y))$$

$$\forall z \, \forall y \, [(\mathsf{LeftOf}(z, y) \wedge \neg \mathsf{Tet}(z)) \rightarrow \mathsf{Cube}(z)]$$

$$\forall x \, (\forall y \, \mathsf{LeftOf}(x, y) \rightarrow \mathsf{Cube}(x))$$

Proof: We will use general conditional proof, but first we apply Exist. Elim. to premise 1 and assume $\forall x \, (Smaller(x,a) \vee \neg Tet(x))$. Now we take an arbitrary c and assume $\forall y \, LeftOf(c,y)$, with the goal of showing Cube(c). This assumption gives us LeftOf(c,a) by Univ. Elim. By Univ. Elim. we also have $Smaller(c,a) \vee \neg Tet(c)$. Consider the second case. Premise 3 gives us $(LeftOf(c,a) \wedge \neg Tet(c)) \rightarrow Cube(c)$. Then Cube(c) follows by modus ponens. In the second case, premise 2 gives us $(Smaller(c,a) \rightarrow Cube(c))$ by Univ. Elim. So we have Cube(c) again by modus ponens. Thus, either way, we have Cube(c), and since c was arbitrary the conclusion follows by general conditional proof.

William Starr | Phil 2621: Minds & Machines | Cornell University

21/21