Announcements

1 HW4 is due today

2 HW1 grades are posted on Bb

A HW1-3 will be returned soon

• After you have a look at them, please ask questions

• Check on them!

about grading

For 09.27

Formal Proofs & Boolean Logic I:

Extending \mathcal{F} with rules for \wedge and \vee

William Starr

09.27.11

William Starr | Phil 2310: Intro Logic | Cornell University

William Starr | Phil 2310: Intro Logic | Cornell University

Review Conjunction Disjunction Conclusion

Today's Class

Formal Proofs for Conjunction & Disjunction

- We'll be extending \mathcal{F} w/rules for two of the Booleans:
 - Conjunction: \wedge Intro, \wedge Elim
 - Disjunction: \vee Intro, \vee Elim
- These formal rules will correspond to the informal inference steps and proof methods we discussed last class
 - Just like = **Elim** (formal) corresponded to the Identity of Indiscernibles (informal)
- We'll review the informal rules as we introduce their formal counterparts

Review Conjunction Disjunction Conclusion

Outline

- Review
- 2 Conjunction
- 3 Disjunction
- A Conclusion

Formal Proofs In Review

- Today we are going to be doing formal proofs involving \neg, \wedge, \vee
- A while back we learned a bit about formal proofs
- Let's review the highlights

William Starr | Phil 2310: Intro Logic | Cornell University

6/3

Review Conjunction Disjunction Conclusion

Rules of Inference Summary

= Elim | P(n) |: | n = m |: | ▷ P(m)

Indiscernibility of Identicals

If n is m, then whatever is true of n is also true of m (where 'n' and 'm' are names)

- = Elim restates Ind. of Id.'s formally:
 - If you have a formula of the form n = m and one of the form P(n) then you can infer one of the form P(m)

Methods of Proof

Two Varieties

- \bullet A proof is a step-by-step demonstration that some conclusion C is true whenever some premises $\mathsf{P}_1,\dots,\mathsf{P}_n$ are true
- There are two ways of writing down these demonstrations
 - **1** Informal Proof: written up as a paragraph in ordinary language
 - **2** Formal Proof: written in an artificial language & formatted using special, visually suggestive notation
- Both ways are useful and have certain advantages
- In informal proofs we follow certain **inference steps** and **methods of proof**
- Similarly, formal proofs utilize rules of inference

William Starr | Phil 2310: Intro Logic | Cornell University

7/3

Review Conjunction Disjunction Conclusion

Rules of Inference

= Introduction (= Intro)

$$\triangleright \mid \mathsf{n} = \mathsf{n}$$

- Everything is self-identical
- You can reuse claims

Reiteration (Reit)

 $\triangleright \mid \mathsf{P}$

Formal Proof

An Example

SameSize(a, b)

b = c

3 c = q

SameSize(a, c) = Elim: 1, 2 4

= Elim: 3.45 SameSize(a, d)

William Starr | Phil 2310: Intro Logic | Cornell University

Review Conjunction Disjunction Conclusion

Formal Proofs

Generally Speaking

A Formal Proof

 C_1 Justification 1

 C_{m} Justification m

C Justification m+1

- $P_1 C$ are in FOL
- Premises: $P_1 P_n$
- Conclusion: C
- Intermediate Conclusions: $C_1 - C_m$
- Justifications indicate where & how the formula on that line is being inferred
 - That is: from which formula(e) & by what rule of inference

William Starr | Phil 2310: Intro Logic | Cornell University

\wedge Intro

From Formal to Informal

Conjunction Introduction

If you have proven (or have as premises) both P and Q, you can infer $P \wedge Q$

Example Informal Proof

We are given that a is a cube but we are also given that a is small. So it clearly follows that a is small and a cube.

- In a formal proof you $must cite \land Intro$
- Order does not matter

∧ Intro

 P_1 P_n $P_1 \wedge \ldots \wedge P_n$

Example Formal Proof

Cube(a) 2 Small(a) 3

 $Cube(a) \wedge Small(a)$ \wedge Intro: 1, 2 Review Conjunction Disjunction Conclusion

\wedge Intro

An Example Formal Proof

Larger(a, b)

2 b = c

3 Cube(a)

4 Tet(c)

Larger(a, c) = **Elim**: 1, 2 5

 $Tet(c) \wedge Larger(a, c)$ 6 \wedge Intro: 4, 5

Larger(a, c) \wedge Tet(c) \wedge Intro: 5, 4

 $\mathsf{Larger}(\mathsf{a},\mathsf{c}) \land \mathsf{Tet}(\mathsf{c}) \land \mathsf{b} = \mathsf{c}$ \wedge Intro: 7, 2

✓ Goal: Larger(a, c) \wedge Tet(c) \wedge b = c

\wedge Elim

From Informal to Formal

Conjunction Elimination

- 2 From $P \wedge Q$ you can infer Q

An Example Informal Proof

a is both a cube and larger thanb. So it is obvious that a is a cube.

• In a formal proof you must cite \wedge Elim

\land Elim

 $P_1 \wedge \ldots \wedge P_n$ \vdots

Where $1 \le i \le n$

• P_i is any one of the conjuncts

Example Formal Proof

1	$Cube(a) \land Larger(a,b)$	
2	Cube(a)	∧ Elim : 1
3	Larger(a, b)	∧ Elim : 1

William Starr | Phil 2310: Intro Logic | Cornell University

17/

. .

Review Conjunction Disjunction Conclusion

∧ Elim

An Example Formal Proof

1 | Smaller(a, b)
$$\wedge$$
 b = c \wedge Tet(c)

2 Smaller(a, b)
$$\wedge$$
 Elim: 1

$$3 \mid b = c \land Elim: 1$$

$$4 \quad | \mathsf{Smaller}(\mathsf{a},\mathsf{c}) = \mathbf{Elim} : 2, 3$$

5
$$b = c \wedge Tet(c)$$
 $\wedge Elim: 1$

6 Smaller(a, c)
$$\wedge$$
 b = c \wedge Tet(c) \wedge Intro: 4, 5

✓ Goal: Smaller(a, c) \land b = c \land Tet(c)

William Starr | Phil 2310: Intro Logic | Cornell University

18/3

Review Conjunction Disjunction Conclusion

∨ Intro

From Informal to Formal Proof

Disjunction Introduction

If you have proven (or have as a premise) P, you can infer $P \lor Q$

Example Informal Proof

We are given that a is a cube, so it must be the case that a is either a cube or small.

- From P_i you can infer any disjunction containing P_i
- It does matter which disjunct P_i is

∨ Intro

1

 $| P_i |$ $| \vdots |$ $| P_1 \lor \ldots \lor P_i \lor \ldots \lor P_n |$

Example Formal Proof

Review Conjunction Disjunction Conclusion

∨ Intro

An Example Formal Proof

1
$$| \text{Tet(a)} |$$

2
$$| Cube(e) \wedge Small(e) |$$

$$3 \quad | \text{ Tet(a)} \lor \text{a} = \text{d} \qquad \qquad \lor \textbf{Intro: } 1$$

4
$$| (Cube(e) \land Small(e)) \lor Tet(c)$$
 $\lor Intro: 2$

$$(\mathsf{Tet}(\mathsf{a}) \vee \mathsf{a} = \mathsf{d}) \wedge ((\mathsf{Cube}(\mathsf{e}) \wedge \mathsf{Small}(\mathsf{e})) \vee \mathsf{Tet}(\mathsf{c})) \wedge \mathsf{Intro}: 3, 4$$

$$\checkmark$$
 Goal: (Tet(a) \lor a = d) \land ((Cube(e) \land Small(e)) \lor Tet(c))

∨ Elim

From Informal to Formal Proof

Proof by Cases (Disjunction Elimination)

To prove C from $P_1 \vee ... \vee P_n$ using this method, show C from each of $P_1, \dots P_n$

Example Informal Proof

Suppose we are given one premise: $(Tet(a) \land b = a) \lor (Small(b) \land c = d),$ and want to show that $b = a \lor c = d$ follows. We will use a proof by cases. **Case 1**: Suppose Tet(a) \wedge b = a. Then b = a, and so $b = a \lor c = d$, clearly follows. Case 2: Suppose Small(b) \wedge c = d. Then c = d, and so $b = a \lor c = d$, follows. In either case the conclusion follows.

∨ Elim $P_1 \vee \ldots \vee P_n$ P_1 C P_n C C \triangleright

William Starr | Phil 2310: Intro Logic | Cornell University

24/32

∨ Elim

An Example Formal Proof

Review Conjunction Disjunction Conclusion

$$\begin{array}{c|c} 1 & (\textbf{Tet(a)} \land b = a) \lor (\textbf{Small(b)} \land c = d) \\ \hline 2 & \textbf{Tet(a)} \land b = a \\ \hline 3 & b = a \\ \hline 4 & b = a \lor c = d \\ \hline 5 & \textbf{Small(b)} \land c = d \\ \hline 6 & c = d \\ \hline 7 & b = a \lor c = d \\ \hline 8 & b = a \lor c = d \\ \hline \end{array} \qquad \begin{array}{c} \land \textbf{Elim: 2} \\ \lor \textbf{Intro: 3} \\ \hline \\ \lor \textbf{Elim: 5} \\ \lor \textbf{Intro: 6} \\ \hline \\ \lor \textbf{Elim: 1, 2-4, 5-7} \\ \hline \end{array}$$

William Starr | Phil 2310: Intro Logic | Cornell University

Goal: $b = a \lor c = d$

Review Conjunction Disjunction Conclusion

∨ Elim Subproofs

- The \vee **Elim** rule makes use of some new notation in \mathcal{F}
- These are called subproofs
- The notation and name are designed to indicate that you have a mini-proof happening within a larger proof
- We will learn more about subproofs next class

∨ Elim

$$\begin{array}{|c|c|c|} \hline P_1 \lor \dots \lor P_n \\ \vdots \\ \hline P_1 \\ \hline \vdots \\ C \\ \vdots \\ \hline P_n \\ \hline \vdots \\ C \\ \hline \vdots \\ C \\ \hline \end{array}$$

Review Conjunction Disjunction Conclusion

∨ Elim

Another Example Formal Proof

We gave an informal proof for this argument last class:

 $Cube(a) \lor Smaller(a, b)$ $\neg Cube(a) \lor Smaller(a, c)$ Smaller(b, c) Smaller(a, c)

Proof: We use the proof by cases method:

- 1 Suppose Cube(a). By the second premise we know that either Cube(a) is false or Smaller(a, c). So, it must be the case that Smaller(a, c)
- 2 Suppose Smaller(a, b). We are given that Smaller(b, c) and Smaller(,) is transitive, so Smaller(a, c)

Let's construct a formal version of this proof in Fitch!

Construct a **formal proof** in \mathcal{F} of the following argument. You will need to use \vee **Elim**.

(So far, \mathcal{F} has the following rules:

$$=$$
 Intro, $=$ Elim, \wedge Intro, \wedge Elim, \vee Intro, \vee Elim.)

William Starr | Phil 2310: Intro Logic | Cornell University

28/32

Review Conjunction Disjunction Conclusion

Even More Practice

Some More Exercises

Let's do exercises 6.3 & 6.5

Review Conjunction Disjunction Conclusion

∨ Elim

Yet Another Example

Last class, you all wrote an informal proof for this argument:

$$\begin{aligned} & \mathsf{Smaller}(\mathsf{a},\mathsf{c}) \vee \mathsf{FrontOf}(\mathsf{a},\mathsf{b}) \\ & \mathsf{Larger}(\mathsf{a},\mathsf{c}) \vee \mathsf{BackOf}(\mathsf{b},\mathsf{a}) \\ & \underline{\mathsf{Between}}(\mathsf{c},\mathsf{a},\mathsf{b}) \\ & \underline{\mathsf{FrontOf}}(\mathsf{a},\mathsf{b}) \end{aligned}$$

Proof: We will do a proof by cases based on the first premise.

- **1** Case 1: Suppose Smaller(a, c). Then $\neg Larger(a, c)$, since the two predicates are inverses. So it follows from premise two that BackOf(b, a), since at least one of the disjuncts must be true. But $BackOf(\ ,\)$ and $FrontOf(\ ,\)$ are also inverses, so it follows that FrontOf(a, b).
- **2** Case 2: Suppose FrontOf(a, b). Well then FrontOf(a, b) follows.

Let's construct a formal version of this proof in Fitch

William Starr | Phil 2310: Intro Logic | Cornell University

29/32

Review Conjunction Disjunction Conclusion

Summary

09.26

- We added rules to \mathcal{F} for conjunction: \wedge Intro, \wedge Elim
- We added rules for disjunction: \vee Intro, \vee Elim
 - \vee Elim corresponded to the proof by cases method
- We learned the new notation of subproofs in \mathcal{F} :
 - Subproofs in \mathcal{F} are like the cases in the proof by cases method