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1 Plot Overview

• The Players:

◦ Lewis-Stalnaker analysis of counterfactuals in terms of similarity

◦ Analyses of causal counterfactuals in terms of structural equa-
tions/causal networks:

ñ Intervention analysis: Pearl, Spirtes et. al., Schulz, Briggs

ñ Minimal network analysis: Hiddleston

• Critical points:

◦ For similarity analysis:

1. Problem of laws vs. matters of fact

2. Communication/metasemantic issues

3. Theoretical appropriateness concerns

◦ For structural equations analyses:

1. Counterexamples to interventionism; MP problem

2. Counterexamples to minimal network analysis

• Positive points:

1. Structural equations can provide an all-purpose semantics of coun-
terfactual modality

◦ Not just causal counterfactuals

◦ Equations govern relations of dependence between facts

◦ Compatible w/metaphysically light (Humean) and hefty spin
on ‘dependencies’

2. Propose a structural equation semantics that integrates ideas of
interventionist/minimal network theories

◦ But addresses counterexamples to those analyses

3. Some insights about counterlegals

4. Gesture at the technical implementation of the proposal
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Lewis-Stalnaker Semantics
(Stalnaker 1968; Stalnaker & Thomason 1970; Lewis 1973)

• φ > ψ is true at w just in case all of the φ-worlds most similar
to w are ψ-worlds

◦ Most similar according to the selection function f
◦ f takes a proposition p and a world w and returns the p-

worlds most similar to w

• Jφ > ψKf = {w | f(w, JφKf ) ⊆ JψKf }

(Making the ‘Limit Assumption’: there are most similar worlds)

2.1 What is Similarity?

• Lewis (1973: §4.2) is quite clear: truth-conditions of counterfactuals
are determined by comparative overall similarity of possible worlds

Somehow, we do have a familiar notion of comparative sim-
ilarity, even of comparative similarity of big, complicated,
variegated things like whole people, whole cities, or even –
I think – whole possible worlds. However mysterious that
notion may be, if we can analyze counterfactuals in terms
of it we will be left with one mystery in place of two.
(Lewis 1973: 92)

Even if we take the selection function as the basic primitive
semantic determinant in the analysis of conditionals, we still
must rely on some more or less independently understood
notion of similarity of closeness of worlds to describe the
intuitive basis on which the selection is made. The intuitive
idea is something like this: the function selects a possible
world in which the antecedent is true but which otherwise is
as much like the actual world, in relevant respects, as possi-
ble. (Stalnaker 1984: 141)

• This is important to our understanding of the semantics

◦ What makes counterfactuals true?

ñ Comparative overall similarity of worlds

◦ What are we estimating when we are judging counterfactuals?

ñ Intuitive overall similarity of worlds
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• Lewis is also clear that we should resist trying to define precise mea-
sures of similarity over structured worlds:

It is tempting to try to define some exact measure of the sim-
ilarity ‘distance’ among worlds, using the mathematical er-
satz worlds introduced in Section 4.1... We must resist temp-
tation. The exact measure thus defined cannot be expected
to correspond well to our own opinions about comparative
similarity. Some of the similarities and differences most im-
portant to us involved idiosyncratic, subtle, Gestalt proper-
ties. It is impossible in practice, and perhaps in principle,
to express these respects of comparison in terms of the dis-
tribution of matter over space-time (or the like), even if the
distribution of matter suffices to determine them. Consider
a similar proposal to measure the visual similarity of faces...
(Lewis 1973: 94-5)

• How well did this position stand the test of time? Not well:

Sometimes a pair of counterfactuals of the following form
seem true: If A, the world would be very different; but if A
and B, the world would not be very different. Only if the
similarity relation governing counterfactuals disagrees with
that governing explicit judgments of what is ‘very different’
can such a pair be true... (I owe this argument to Pavel Tichy
and, in a slightly different form, to Richard J. Hall.) It seems
to me no surprise, given the instability even of explicit judg-
ments of similarity, that two different comparative similar-
ity relations should enter into the interpretation of a single
sentence. (Lewis 1979: 466)

• Lewis’ response:

...[W]e must use what we know about the truth and falsity
of counterfactuals to see if we can find some sort of simi-
larity relation – not necessarily the first one that springs to
mind – that combines with [the similarity analysis] to yield
the proper truth conditions. It is this combination that can
be tested against our knowledge of counterfactuals, not [the
similarity analysis] by itself. In looking for a combination
that will stand up to the test, we must use what we know
about counterfactuals to find out about the appropriate sim-
ilarity relation – not the other way around.
(Lewis 1979: 466-7)
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• Lewis’ final position:

◦ Not our intuitive conception of overall similarity at work

◦ Whatever concept of similarity is at work needs to be cooked up
to fit our counterfactuals

◦ Further, these similarity relations we cook up aren’t going to be
fully general.

ñ There’s going to be a heterogenous class of them

• Why did Lewis’ position change?

◦ Counterexamples from Fine, Tichý and others.

◦ These show that intuitive overall comparative similarity of worlds
is not what is at play in the evaluation of counterfactuals

◦ Intuitively, a world where Nixon pushed the button and some
mechanical failure prevented a nuclear holocaust is more similar
to our own than one where a nuclear holocaust happens. Yet,
it seems true that if Nixon had pushed the button, there would
have been nuclear holocaust. (Fine 1975)

◦ Tichý (1976: 271):

(1) a. Invariably, if it is raining, Jones wears his hat

b. If it is not raining, Jones wears his hat at random

c. Today, it is raining and so Jones is wearing his hat

d. But, even if it had not been raining, Jones would have
been wearing his hat

◦ Given (1a-c), (1d) is judged to be incoherent/false/bad

◦ These can be handled by Lewis’ Standard Resolution of similarity

• Lewis’ Standard Resolution:

S1. First importance: avoid big, widespread, diverse violations of
law. (‘big miracles’)

S2. Second importance: maximize the spatio-temporal region through-
out which perfect match of particular fact prevails.

◦ Maximize exact match in matters of particular fact before
antecedent turns out true

S3. Third importance: avoid even small, localized, simple violations
of law. (‘little miracles’)

S4. Little or no importance: secure approximate similarity of partic-
ular fact, even in matters that concern us greatly.
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• Essential for solving Fine/Tichý cases that S4 be ‘no importance’

◦ After little miracle needed to make Nixon push button, don’t care
about matching particular facts, e.g. lack of nuclear holocaust.

◦ After little miracle needed to change the rain, don’t care about
matching particular facts, e.g. Jones wearing his hat

• More theses, more problems:

1. Particular matters of fact do, sometimes, matter

2. Bleached of all intuitive content, one must wonder how speakers
manage to resolve the similarity parameter in context

3. Lewis’ new methodology suggests curve-fitting similarity to make
particular counterfactuals true; two worries:

◦ This makes the theory logically/semantically unexplanatory

◦ Even if logically/semantically explanatory, it does not unify
counterfactual reasoning with rational agency, imagination,
causation, etc.

2.2 When Matters of Particular Fact Matter

• But as even Lewis notes, some cases go the other way:

(2) [You’re invited to bet heads on a coin-toss. You decline. The
coin comes up heads.] See, if you had bet heads you would have
won! (Slote 1978: 27 fn33; reporting Morgenbesser)

◦ Particular fact held fixed: toss outcome

(3) If we had bought one more artichoke this morning, we would
have had one for everyone at dinner tonight (Sanford 1989: 173)

◦ Particular fact held fixed: number of dinner guests

(4) [t1: switch 1 is up, switch 2 is down and the light is off. t2: I flip
switch 1 down (light remains off). t3: I flip switch 2 up (light
remains off).] If I hadn’t flipped switch 1 down, the light would
be on. (My variant on Lifschitz’s example in Schulz 2007: 101)

◦ Particular fact held fixed: switch two is up

• These are a problem for S4, since they seem to make particular mat-
ters of fact after the antecedent event highly important

• Lewis (1979: 472): “I would like to know why”.
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• Veltman (2005: 164) riffs on Tichý:

(5) a. Jones always flips a coin before he opens the curtain to see
what the weather is like

b. If it’s not raining and the coin comes up heads, he wears his
hat

c. If it’s not raining and the coin comes up tails, he doesn’t
wear his hat

d. Invariably, if it is raining he wears his hat

e. Today, the coin came up heads and it is raining, so Jones is
wearing his hat

f. But, even if it hadn’t been raining, Jones would have been
wearing his hat

• Given (5a-e), (5f) seems right

• So why do we give up the fact that Jones is wearing his hat in (1) but
not in (5)?

• Diagnosis by Veltman (2005: 164):

Similarity of particular fact is important, but only for facts that
do not depend on other facts. Facts stand and fall together. In
making a counterfactual assumption, we are prepared to give up
everything that depends on something that we must give up to
maintain consistency. But, we want to keep in as many indepen-
dent facts as we can.

◦ In (1), Jones wearing his hat depended on it raining, but the coun-
terfactual made us give that up.

ñ So we also give up the fact that he is wearing his hat

◦ In (5), Jones wearing his hat does not depend just on it raining

ñ It depends also on the fact that the coin came up heads

ñ Se we are not forced to give up the fact that he is wearing his
hat when we give up the fact that it’s raining

• It is hard to see how to supplement the similarity analysis without
appealing to dependence of some sort

• As I will discuss in §3, once one has dependence there’s no work left
for similarity to do in an analysis of counterfactuals

• More motivation to talk in terms of dependence comes from coun-
terexamples that violate S2
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(6) [Lighting this firecracker leads to a simultaneous flash and bang.
I didn’t light it, so there was neither a flash nor bang.] If there
had been a flash (just now), there would have been a bang (just
now). (Hiddleston 2005: 644)

◦ We don’t hold fixed all facts leading up to the flash

◦ We imagine the flash being brought about in the way made
salient in the context

• Explanation in terms of dependence:

◦ WhenA’s dependence on B is salient, we imagineA being brought
about by B

◦ But if other facts also depend on B, then they will be brought
about as well

2.3 Communication Problems

• Problem 1 (Problem of Access):

◦ It’s unclear how agents like us could mutually fixate on particular
values of f, since by Lewis’ own lights f does not track any known
intuitive concept of similarity

ñ There are a LOT of different values of f ! Assuming there are
only 4 possible worlds, there’d still be 100s

◦ It’s unclear how agents like us express propositions, or even a
coherent range of them, on a semantics which treats f as a con-
textual parameter

◦ It’s unclear how agents like us communicate and comprehend
counterfactuals

• Problem 2 (Problem of Informativity):

◦ Strictly speaking, f (together with world of evaluation) contains
more information than the truth of one counterfactual

◦ Given a value of f and a world of evaluation, one knows the
truth-conditions of every counterfactual

◦ So once it is common ground which f is being used, it should be
common ground which counterfactuals are true

◦ But then uttering any counterfactual, on the similarity view, would
seem redundant

◦ Contrast with indexical I :

ñ Need to know who speaker is to know what’s communicated
by I’m tired

ñ But that knowing who speaker is isn’t sufficient for deducing
truth or falsity of sentence
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2.4 Theoretical Appropriateness

• Counterfactuals are a essential tool for thinking about rational agency
and scientific explanation

• It is not clear why similarity, even of the intuitive variety, would be at
the heart of either phenomenon

• It is just not clear what contemporary picture of rational agency or
scientific explanation one could hold that would exalt the extremely
particularized, case-by-case, notion of similarity Lewis ends up with

• Worry: this is asking too much of a semantics!

◦ Perhaps it is asking more than we should demand

◦ But if another semantics offers it, it seems that would be some
reason to prefer it

• What’s our world like?

◦ Does similarity matter?

◦ Any important ‘similarities’ seem reducible to more basic no-
tions, e.g. laws, dependence, etc.

◦ Consider Loewer’s (2007) proposal: counterfactuals ideally track
probability that B occurs given A, the fundamental dynamical
laws, and an initial boundary condition of the universe.

• What are we like?

◦ Why would similarity matter to agents with limited resources,
trying to bring about conditions favorable to them in an uncer-
tain world?

3 Structural Equations

• How to proceed?

◦ Conditional probability (Edgington 2004)

◦ Dependence in premise semantics (Kratzer 1989; Veltman 2005)

◦ Use explanation to constrain similarity (Kment 2006)

◦ Introduce talk of ‘states’ and changes btwn them (Fine 2012)

• Each of these diverse strategies has limitations and all bear a striking
resemblance to work on counterfactuals in causal models and struc-
tural equations (Spirtes et al. 1993, 2000; Pearl 2000, 2009)
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[...]the closest-world semantics still leaves two questions unan-
swered. (1) What choice of distance measure would make
counterfactual reasoning compatible with ordinary concep-
tions of cause and effect? (2) What mental representation
of inter world distances would render the computation of
counterfactuals manageable and practical (for both humans
and machines)? These two questions are answered by the
structural model approach expanded in Chapter 7.
(Pearl 2009: 35)

• Why structural equations are promising:

1. Connects plausibly to accounts of explanation and causation (Wood-
ward 2003; Hitchcock & Woodward 2003; Woodward & Hitchcock
2003; Halpern & Pearl 2005a,b)

◦ For dissent: Hall (2007); Cartwright (2007)

2. Emerged quite naturally from a large literature on rational agency
and representation

◦ E.g. Pearl (2000, 2009); Sloman (2005)

• I’ll be focussing on the latter motivation

3.1 Rational Agency (Pearl 2000, 2009; Sloman 2005)

• Background picture: we are agents who can influence the world

◦ Some states of affairs are better/worse for us than others

◦ We have imperfect information about the world

◦ And limited resources (time, energy, strength) to settle on and
execute actions

• Uncertainty: Bayesian methods

◦ That is, credences defined over a range of events (binary facts)
satisfying Kolmogorov axioms; updated by conditionalization.

◦ Suppose you have a system with 8 events in play: A,B,C,D, E, F,G,H.

◦ A complete probabilistic description of this system is the joint
distribution: P(A, B,C,D, E, F,G,H)

ñ This requires estimating probability of all possible combina-
tions of event outcomes:
P(A = 1, B = 1, C = 1,D = 1, E = 1, G = 1,H = 1) = n0,
P(A = 1, B = 1, C = 1,D = 1, E = 1, G = 1,H = 0) = n1, . . .

ñ This requires storing 28 − 1(= 255) values, for just 8 events!
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• Resource sensitivity: conditional (in)dependence

◦ Agents need to compress joint probability distribution

◦ Fortunately, probability of some variables depends on others

ñ E.g. P(B | A) ≠ P(B), P(D | C,B) ≠ P(D)
Probabilistic Independence

P(A) is independent of P(B) iff P(A) = P(A | B) = P(A | ¬B)
Probabilistic Dependence

P(A) is dependent on P(B) iff P(A) ≠ P(A | B) ≠ P(A | ¬B)
◦ Pearl’s discovery was that this affords a very compact represen-

tation of joint probabilities

◦ P(A, B,C,D, E, F,G,H) =
P(A)·P(B)·P(C | A,B)·P(D | C)·P(E | C)·P(F | D)·P(G | E)·P(H | F,G)
ñ Assuming A and B are independent of all other variables,

and all other conditional probabilities register relations of
conditional dependence

◦ This reduces 255 to 18!

◦ Pearl notes that chains of probabilistic dependence form a di-
rected acyclic graph:

If we spelled out all individual probabilities, we’d end with 28 –
1¼ 255 p values. (28 because there are 8 variables with 2 values
each. We subtract 1 because the sum of all the ps must equal 1.0;
the probability that the system is in one of the 256 states is 1.0.
Therefore, we can figure out the last p by subtracting all the other ps
from 1.0.) Each p is a parameter of the system so we see that a full
description requires 255 parameters.

But if we know something about the structure of the causal
graph that relates the variables, we can use that knowledge to re-
duce the number of parameters needed to describe the system.
Imagine that the variables are related in the following way:

This graph shows a lot of independence relations among these
variables: A is independent of B, and A and D are conditionally inde-
pendent given C, along with many other independence relations.
These independence relations can be taken advantage of to rule out
many of the joint probability distribution’s parameters. The trick is
to read the joint probability off the graph starting from the root
nodes (the initial causes) and progressing through the causal graph
by following links. The fact that variables’ values depend only on
their parents and not on their parents’ parents allows a simple tech-
nique for writing the joint probability distribution in a simple form.
In this case, it turns out that

P(A, B, C, D, E, F, G, H)
¼ P(A)"P(B)"P(C|A,B)"P(D|C)"P(E|C)"P(F|D)"P(G|E)"P(H|F,G).

Notice that we obtain the new form by conditioning each variable
on its parents. This equation may look scary, but in fact it is a lot
simpler than specifying the probabilities of each state individually.
To describe it fully requires knowing P(A), a single number or pa-
rameter, P(B), another parameter, as well as the conditional proba-
bilities. They require more parameters. P(C|A,B) requires four:

P(C¼ on | A¼ on, B¼ on)
P(C¼ on | A¼ on, B¼ off)
P(C¼ on | A¼ off, B¼ on)
P(C¼ on | A¼ off, B¼ off)

C
A

B

D

E
H

F

G
Figure 4.16

50 The Theory

ñ Arrows signify (sometimes joint) dependence

• Agency:

◦ Conditional dependencies are not just any way of compactly rep-
resenting joint probabilities

◦ Leverage for an agent looking to influence the world

◦ Knowing what A depends on is rather useful information for
bringing it about when A is not under our direct influence

◦ This invites the idea that agents reason by considering certain
hypothetical changes to the values of nodes

ñ And letting their effects flow through the graph

• This has inspired two analyses of counterfactuals in this framework

• Interventionist Analysis (Pearl, Schulz, Briggs)

◦ To evaluate A > B, sever all links coming in to A, change it’s value
to 1 and let that change percolate through the graph
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• Minimal Network Analysis (Hiddleston)

◦ To evaluate A > B, find the smallest set of independent ancestors
of A and check that each way of changing them which makes A
true, also makes B true.

• To see how these theories work, and how it solves Lewis problem of
particular facts, consider the switches and light case.

3.2 Intervention, Minimal Networks, Minimal Inverventions

3.2.1 Problems for Interventionism

• Consider Flash > Bang, given:

Bet ¼ r includes a break from M at Bet. But the nonactual value of Bet then
propagates through the system: Switch is not a candidate for inclusion in
Break or Intact because its positive parent Bet has a nonactual value.
Similarly for Reflect and Win. The unique maximal Intact(Mi, M) is
{Emit}, and the unique minimal Break(Mi, M) is {Bet}. The values of the
other variables are ‘‘up for grabs’’, and this time the laws do not uniquely
determine their values. So, ‘Bet ¼ r > p(Win) ¼ .2’ is true, but it is false
both that Ben would win and that he would lose.

Fig. 4 represents a case of a ceremonial cannon which explodes, creating
a flash and a bang. Suppose the variables are binary and all have value 1 in
M. Suppose the relevant laws of M are:

(a) (Fuse Lit ¼ 1) ) p(Explosion ¼ 1) ¼ .95,
(b) Flash ¼ Explosion
(c) Bang ¼ Explosion

That is, the fuse is imperfect, but once there has been an explosion (in the
actual absence of baffles, mufflers, etc.) there will definitely be both a flash
and a bang. TCM counts it true, ‘If the flash had not occurred, then the
bang would not have occurred’, ‘Flash ¼ 0 > Bang ¼ 0’. Intact(Mi,
M) ¼ {Fuse Lit} is maximal for Flash ¼ 0 (among nondescendants of
Flash) because there is no possible assignment on which Flash ¼ 0 and
Explosion ¼ 1. By law (b) Flash ¼ 0 necessitates Explosion ¼ 0, and by
(c) that necessitates Bang ¼ 0. Lewis and Pearl would count as relevant a
model M’ in which Flash ¼ 0 and Bang ¼ 1. But if the laws really are as we
stated, then this is an impossible situation, and ‘‘causal breaks’’ must be
possible. I take it that Flash ¼ 0 > Bang ¼ 0 is intuitively true in this case.

Bet

Emit

Switch

Reflect

Win

Figure 3. Cheating on photons.

Fuse
Lit

Explosion

Flash

Bang

Figure 4. A cannon.

644 NOÛS

◦ Surely: if there had been a flash, there would have been a bang

◦ Hiddleston: this a problem for Lewis and interventionism

• Similarly, consider an example where TV 1 and TV 2 display pictures
exactly when a broadcast tower is sending a signal. Right now, the
tower isn’t sending a signal, so neither TV is displaying a picture. But,
it seems true that if TV 1 were displaying a picture right now, TV 2
would be displaying a picture.

• Here’s an example without common causes:

(7) If the light were off and the switch were flipped, the light would
turn on

◦ An interventionist gives the wrong account here

◦ They cut the influence of the switch on the light to make first
antecedent true, so when the second antecedent changes the
switch, it no longer influences the light!

• Briggs considers Pearl’s executioner scenario (Fig.4) and the following:

(8) If A had fired, then (even) if the captain had not signaled, the
prisoner would have died.
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◦ Now suppose the court did give the order, the captain gave the
signal, both A and B fired and the prisoner died.

◦ The whole counterfactual (8) will be true, but the embedded one
false, even though antecedent is true.

◦ Evaluating (8) will first remove the arrow from C to A, setting A
to 1, and then remove the link from U to C, setting C to 0.

◦ Because A was set to 1 by intervention, D will still be 1.

3.2.2 Problems for Minimal Network

• Minimal network theory seems to give the right predictions

• But minimal network theory has it’s own issues:

◦ What about counterfactuals describing worlds extending indefi-
nitely into the past and future

◦ There is no minimal network that could make this true: if the
universe extends infinitely into the past, it is even older than I
thought.

• In general, it allows infinite backtracking:

(9) If I had been born in Scotland, the initial conditions of the
universe would (have to) have been different

◦ Perhaps (9) is true, but it is a manifestly odd thing to say without
a lot of setup

◦ Setup which makes salient the connection between those initial
conditions and my birth

• Also, examples that force an intervention-style reading:

(10) (The light is off and the switch down.) If the light were
miraculously on, the switch would be up.
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3.2.3 Minimal Intervention (Starr)

• Here’s a hypothesis that blends the approaches:

◦ In every context, there is a salient set of atomic variables A

◦ In evaluating a counterfactual, we assume any variables it con-
tains are added to A

◦ Further, we find the smallest subgraph ofw that connects a max-
imal number of the variables in A

◦ We then consider each minimal intervention to the top nodes
that makes the antecedent true, and check that the consequent
comes out true

• This will perform exactly like interventionism when A = {X,Y} and
you are intervening to evaluate X > Y in a graph where Y := X

• It will perform exactly like minimal network theory when A includes
all of the variables in the network

• Think of it as another step in making the structural equations analysis
sensitive to our limited cognitive resources (in this case attention)

3.3 Structured Possible Worlds

• In standard propositional logics, atomic sentences are assigned inde-
pendent truth-values

◦ A valuation v , is a simple function from atomics to truth-values

ñ E.g. v(A,w) = 1, v(B,w) = 0, . . .

• Causal models give up this assumption

◦ The truth-value of an atomic D can depend on the truth-value
others A and B

• These dependencies are functional

◦ If D depends only on A and B, then Ds’ truth-value is uniquely
determined by D and A

• D’s truth depends on both A and C being true, D := A∧ C

◦ Or D’s truth depends on one of them being true, D := A∨ C

• You can picture the models underlying these equations as directed
graphs

• Starting point: classical possible worlds are valuations (situations are
partial valuations)
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Figure 1: Classical possible
world w

w(p) = 0

w(q) = 1

w(r) = 1

Figure 2: System of equations
for w

◦ Worlds fix the truth values of each atomic sentence

◦ Picture each atomic as a dot, which is black if false, white if true.

• Now depart from the classical picture:

◦ The dependencies between facts endow worlds with a structure'

&

$

%

S1 S2

L

˜

˜

L :=S1∧S2

Figure 3: A structured possible
world w

w(S1) = 0 (11)

w(S2) = 1 (12)

w(L) = w(S1) ·w(S2) (13)

= 0

Figure 4: Equations for w

• We write our equations keeping in mind that ¬,∧ and ∨ all have arith-
metic counterparts operating on 1 and 0

¬ ∧ ∨
1− x x ·y (x +y)− (x ·y)

• To evaluate the counterfactual S1 > L, create world wS1

◦ Step 1: intervention

ñ Eliminate old assignment for S1, line (14)

ñ Make S1 1, line (15)

◦ Step 2: projection
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ñ Apply equation (17) to solve for L
ñ New result: wS1(L) = 1!

'

&

$

%

S1 S2

L

L :=S1∧S2

Figure 5: The New World wS1

w(S1)��HH= 0 (14)

wS1(S1) = 1 (15)

wS1(S2) = w(S2) = 1 (16)

wS1(L) = w(L) = wS1(S1) ·wS1(S2)
(17)

= �A0
= 1 (18)

Figure 6: Equations for wS1

• To see how this works better, consider a slightly modified scenario:

◦ Switch 1 turns on a servo that controls switch 2: S2 := S1

◦ Switch 2 turns on the light: L := S2

◦ Currently, switch 1 is up, so 2 is up and the light is on

(19) If switch 2 were up, the light would be off

• This comes out true, because after setting S2 to 1, the equation con-
necting it will make L come out as 1 too

◦ Lesson: you only keep fixed facts which are not determined by
facts you are counterfactually giving up

3.4 What are Worlds?

• The idea spelled out for w:

◦ Each independent atomic is mapped to a truth-value: {〈S2,1〉, 〈S1,0〉}
◦ Pair L with a dependency function d that determines the truth of

L from a pairing of S1, S2 with truth-values:

S1 S2 L
1 1 1
1 0 0
1 0 0
1 1 0

◦ d maps L and {〈S1,1〉, 〈S2,1〉} to 1

◦ d maps L and {〈S1,1〉, 〈S2,0〉} to 0

◦ d maps L and {〈S1,0〉, 〈S2,1〉} to 0

◦ d maps L and {〈S1,0〉, 〈S2,0〉} to 0

• So, a world is a function from some independent atomics to truth-
values (independent facts), together with a dependence function ap-
plying to each dependent atomic
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• w = {〈S2,1〉, 〈S1,0〉, d}

◦ d ={ 〈 〈L, {〈S1,1〉, 〈S2,1〉}〉,1〉,
〈 〈L, {〈S1,1〉, 〈S2,0〉}〉,0〉,
〈 〈L, {〈S1,0〉, 〈S2,1〉}〉,0〉,
〈 〈L, {〈S1,0〉, 〈S2,0〉}〉,0〉 }

• Dependence functions map pairs of atomics and situations (p, s) to
truth-values

◦ Particular dependencies can be identified with the sub-function
that maps a single atomic and some situations to truth-values,
e.g. there’s only one dependency in d

• In three layer networks, dependence functions will have situations in
their domain that are not part of the independent facts of the world

◦ What’s important is that those situations are determined by some
other part of the dependence function and the independent facts

3.5 Complex Antecedents

• We’d like to define the notation wφ for any non-counterfactual φ

• Let’s first try just with compounds of atomics:

◦ wA is the world exactly like w except that it assigns A to 1

◦ w¬A is the world exactly like w except that it assigns A to 0

◦ wA∧B is the world exactly like w except that it assigns A, B to 1

◦ wA∨B is the world exactly like w except that it assigns ?????????

◦ w¬φ is the world exactly like w except it assigns ??????

• An idea inspired by Dynamic Logic Harel et al. (2000):

◦ Distinguish between ways of a formula being true, and ways of
making it true

ñ On analogy with: ways a machine can be when a program has
run, versus ways a machine can run a program

◦ Ways: transitions between worlds 〈w,w′〉
ñ Transitions: thought of as minimal network intervention

◦ A way of A being true: 〈w,w〉 where w(A) = 1

◦ A way of making A true 〈w,w′〉 where w(A) = 0, w′(A) = 1 and
w differs from w′ by an minimal network intervention to make
A true.
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◦ Thus: JpKA will be a set of 〈w,w′〉 where either w = w′ and
w(p) = 1 or w′ ∈ wAp where wAp is the set of minimal network
interventions on the subgraph connecting A to make p true.

• This generalizes to connectives:

Definition 1 (Semantics)
(1) JpKA = {〈w,w′〉 | w = w′ if w(p) = 1 & w′ ∈ wAp if w(p) = 0}
(2) J¬φKA = {〈w′,w〉 | w = w′ & 〈w,w′〉 ∉ JφKA or 〈w,w′〉 ∈ JφKA}
(3) Jφ∧ψKA = {〈w,w′′〉 | ∃w′: 〈w,w′〉 ∈ JφKA & 〈w′,w′′〉 ∈ JψKA}
(4) Jφ∨ψKA = JφKA ∪ JψKA
(5) Jφ > ψKA = {〈w,w〉 | 〈w′,w′〉 ∈ JψKA if 〈w,w′〉 ∈ JφKA}
(6) Jp := φKA = . . .

Dependency Semantics for Counterfactuals

• Jφ > ψK = {w | wφ ⊆ JψK}

• φ > ψ is true iff either ψ is independent of φ and true, or else
φ is sufficient for bringing about ψ when holding fixed all those
facts that do not depend upon φ.1

◦ Entailment, truth, etc. defined classically?

3.6 Remaining Issues

• The problem of informativity is solved by putting structural equations
‘in the world’

◦ You are effectively ruling out similarity measures by ruling out
worlds with certain structures

◦ Only form of context sensitivity is the ‘variables in play’

• Experimental work evaluating structural equation theories ???

• What about counter-legals?

◦ Consider: (L := S1 ∨ S2) > L

ñ (L := S1 ∨ S2) denotes a dependency d
. d ={ 〈 〈L, {〈S1,1〉, 〈S2,1〉}〉,1〉,

〈 〈L, {〈S1,1〉, 〈S2,0〉}〉,1〉,
〈 〈L, {〈S1,0〉, 〈S2,1〉}〉,1〉,
〈 〈L, {〈S1,0〉, 〈S2,0〉}〉,0〉 }

◦ We can then define wA:=φ as: w with 〈A,x〉 removed and the
dependency denoted by A := φ added in its place

1This intuitive paraphrase is from Cumming (2009: 1).
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• Consider a case where one switch controls a light; the switch is up
and the light on:

◦ But if the light had been off, then if you had flipped the switch
up, the light would have come on

A Logic of Structural Counterfactuals

Definition 2 (Situations) S : A, {1,0} where A ⊆At

Definition 3 (Dependencies) D : (A× S), {1,0} where A ⊂At

Definition 4 (Worlds)
W = {s ∪ d | s ∈ S & d ∈ D & dom s ∩ domd = � & dom s ∩ domd =At}

• Needed constraint: d is recursive

Definition 5 (Atomic Truth in a World)
w(p) = s(p) if s ∈ w and p ∈ dom s. Otherwise w(p) = d(p, s′), where
d ∈ w and either s = s′ or s′ is determined by d and s′

• s′ is determined by d and s...

Definition 6 (Minimal Changes)
wAp is the set of worlds w′ s.t. w(p) = 1 and w = w′ or g is the largest
subgraph of w connecting every sentence in A, w′ results from a minimal
changes to the top nodes of g and w′(p) = 1

Definition 7 (Semantics)
(1) JpKA = {〈w,w′〉 | w = w′ if w(p) = 1 & w′ ∈ wAp if w(p) = 0}
(2) J¬φKA = {〈w′,w〉 | w = w′ & 〈w,w′〉 ∉ JφKA or 〈w,w′〉 ∈ JφKA}
(3) Jφ∧ψKA = {〈w,w′′〉 | ∃w′: 〈w,w′〉 ∈ JφKA & 〈w′,w′′〉 ∈ JψKA}
(4) Jφ∨ψKA = JφKA ∪ JψKA
(5) Jφ > ψKA = {〈w,w〉 | 〈w′,w′〉 ∈ JψKA if 〈w,w′〉 ∈ JφKA}
(6) Jp := φKA = . . .
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